ihatemoney/ihatemoney/bin/priditherpng
2023-12-04 12:01:38 -05:00

254 lines
7.6 KiB
Python
Executable file

#!/Users/wenxintian/Desktop/Fall2023/EECS481/ihatemoney/ihatemoney/bin/python3
# pipdither
# Error Diffusing image dithering.
# Now with serpentine scanning.
# See http://www.efg2.com/Lab/Library/ImageProcessing/DHALF.TXT
# http://www.python.org/doc/2.4.4/lib/module-bisect.html
from bisect import bisect_left
import png
def dither(
out,
input,
bitdepth=1,
linear=False,
defaultgamma=1.0,
targetgamma=None,
cutoff=0.5, # see :cutoff:default
):
"""Dither the input PNG `inp` into an image with a smaller bit depth
and write the result image onto `out`. `bitdepth` specifies the bit
depth of the new image.
Normally the source image gamma is honoured (the image is
converted into a linear light space before being dithered), but
if the `linear` argument is true then the image is treated as
being linear already: no gamma conversion is done (this is
quicker, and if you don't care much about accuracy, it won't
matter much).
Images with no gamma indication (no ``gAMA`` chunk) are normally
treated as linear (gamma = 1.0), but often it can be better
to assume a different gamma value: For example continuous tone
photographs intended for presentation on the web often carry
an implicit assumption of being encoded with a gamma of about
0.45 (because that's what you get if you just "blat the pixels"
onto a PC framebuffer), so ``defaultgamma=0.45`` might be a
good idea. `defaultgamma` does not override a gamma value
specified in the file itself: It is only used when the file
does not specify a gamma.
If you (pointlessly) specify both `linear` and `defaultgamma`,
`linear` wins.
The gamma of the output image is, by default, the same as the input
image. The `targetgamma` argument can be used to specify a
different gamma for the output image. This effectively recodes the
image to a different gamma, dithering as we go. The gamma specified
is the exponent used to encode the output file (and appears in the
output PNG's ``gAMA`` chunk); it is usually less than 1.
"""
# Encoding is what happened when the PNG was made (and also what
# happens when we output the PNG). Decoding is what we do to the
# source PNG in order to process it.
# The dithering algorithm is not completely general; it
# can only do bit depth reduction, not arbitrary palette changes.
import operator
maxval = 2 ** bitdepth - 1
r = png.Reader(file=input)
_, _, pixels, info = r.asDirect()
planes = info["planes"]
# :todo: make an Exception
assert planes == 1
width = info["size"][0]
sourcemaxval = 2 ** info["bitdepth"] - 1
if linear:
gamma = 1
else:
gamma = info.get("gamma") or defaultgamma
# Calculate an effective gamma for input and output;
# then build tables using those.
# `gamma` (whether it was obtained from the input file or an
# assumed value) is the encoding gamma.
# We need the decoding gamma, which is the reciprocal.
decode = 1.0 / gamma
# `targetdecode` is the assumed gamma that is going to be used
# to decoding the target PNG.
# Note that even though we will _encode_ the target PNG we
# still need the decoding gamma, because
# the table we use maps from PNG pixel value to linear light level.
if targetgamma is None:
targetdecode = decode
else:
targetdecode = 1.0 / targetgamma
incode = build_decode_table(sourcemaxval, decode)
# For encoding, we still build a decode table, because we
# use it inverted (searching with bisect).
outcode = build_decode_table(maxval, targetdecode)
# The table used for choosing output codes. These values represent
# the cutoff points between two adjacent output codes.
# The cutoff parameter can be varied between 0 and 1 to
# preferentially choose lighter (when cutoff > 0.5) or
# darker (when cutoff < 0.5) values.
# :cutoff:default: The default for this used to be 0.75, but
# testing by drj on 2021-07-30 showed that this produces
# banding when dithering left-to-right gradients;
# test with:
# priforgepng grl | priditherpng | kitty icat
choosecode = list(zip(outcode[1:], outcode))
p = cutoff
choosecode = [x[0] * p + x[1] * (1.0 - p) for x in choosecode]
rows = repeat_header(pixels)
dithered_rows = run_dither(incode, choosecode, outcode, width, rows)
dithered_rows = remove_header(dithered_rows)
info["bitdepth"] = bitdepth
info["gamma"] = 1.0 / targetdecode
w = png.Writer(**info)
w.write(out, dithered_rows)
def build_decode_table(maxval, gamma):
"""Build a lookup table for decoding;
table converts from pixel values to linear space.
"""
assert maxval == int(maxval)
assert maxval > 0
f = 1.0 / maxval
table = [f * v for v in range(maxval + 1)]
if gamma != 1.0:
table = [v ** gamma for v in table]
return table
def run_dither(incode, choosecode, outcode, width, rows):
"""
Run an serpentine dither.
Using the incode and choosecode tables.
"""
# Errors diffused downwards (into next row)
ed = [0.0] * width
flipped = False
for row in rows:
# Convert to linear...
row = [incode[v] for v in row]
# Add errors...
row = [e + v for e, v in zip(ed, row)]
if flipped:
row = row[::-1]
targetrow = [0] * width
for i, v in enumerate(row):
# `it` will be the index of the chosen target colour;
it = bisect_left(choosecode, v)
targetrow[i] = it
t = outcode[it]
# err is the error that needs distributing.
err = v - t
# Sierra "Filter Lite" distributes * 2
# as per this diagram. 1 1
ef = err * 0.5
# :todo: consider making rows one wider at each end and
# removing "if"s
if i + 1 < width:
row[i + 1] += ef
ef *= 0.5
ed[i] = ef
if i:
ed[i - 1] += ef
if flipped:
ed = ed[::-1]
targetrow = targetrow[::-1]
yield targetrow
flipped = not flipped
WARMUP_ROWS = 32
def repeat_header(rows):
"""Repeat the first row, to "warm up" the error register."""
for row in rows:
yield row
for _ in range(WARMUP_ROWS):
yield row
break
yield from rows
def remove_header(rows):
"""Remove the same number of rows that repeat_header added."""
for _ in range(WARMUP_ROWS):
next(rows)
yield from rows
def main(argv=None):
import sys
# https://docs.python.org/3.5/library/argparse.html
import argparse
parser = argparse.ArgumentParser()
if argv is None:
argv = sys.argv
progname, *args = argv
parser.add_argument("--bitdepth", type=int, default=1, help="bitdepth of output")
parser.add_argument(
"--cutoff",
type=float,
default=0.5,
help="cutoff to select adjacent output values",
)
parser.add_argument(
"--defaultgamma",
type=float,
default=1.0,
help="gamma value to use when no gamma in input",
)
parser.add_argument("--linear", action="store_true", help="force linear input")
parser.add_argument(
"--targetgamma",
type=float,
help="gamma to use in output (target), defaults to input gamma",
)
parser.add_argument(
"input", nargs="?", default="-", type=png.cli_open, metavar="PNG"
)
ns = parser.parse_args(args)
return dither(png.binary_stdout(), **vars(ns))
if __name__ == "__main__":
main()